4.4 Article

Bioremediation of Cd by Microbially Induced Calcite Precipitation

Journal

APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
Volume 172, Issue 6, Pages 2907-2915

Publisher

SPRINGER
DOI: 10.1007/s12010-014-0737-1

Keywords

Cd; MICP; Calcite; Urease; Bioremediation

Funding

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF)
  2. Ministry of Education [NRF-2011-0025229]

Ask authors/readers for more resources

Contamination by Cd is a significant environmental problem. Therefore, we examined Cd removal from an environmental perspective. Ureolysis-driven calcium carbonate precipitation has been proposed for use in geotechnical engineering for soil remediation applications. In this study, 55 calcite-forming bacterial strains were newly isolated from various environments. Biomineralization of Cd by calcite-forming bacteria was investigated in laboratory-scale experiments. A simple method was developed to determine the effectiveness of microbially induced calcite precipitation (MICP). Using this method, we determined the effectiveness of biomineralization for retarding the flow of crystal violet through a 25-mL column. When the selected bacteria were analyzed using an inductively coupled plasma optical emission spectrometer, high removal rates (99.95 %) of Cd were observed following incubation for 48 h. Samples of solids that formed in the reaction vessels were examined using a scanning electron microscope. The CdCO3 compounds primarily showed a spherical shape. The results of this study demonstrate that MICP-based sequestration of soluble heavy metals via coprecipitation with calcite may be useful for toxic heavy metal bioremediation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available