4.4 Article

Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA

Journal

GEOBIOLOGY
Volume 3, Issue 3, Pages 211-227

Publisher

WILEY
DOI: 10.1111/j.1472-4669.2005.00052.x

Keywords

-

Funding

  1. NASA Graduate Student Research Program (GSRP) [NGT5-50348]
  2. NSF-LExEN [OCE-9817730]

Ask authors/readers for more resources

Microbiological and geochemical surveys were conducted at three hot springs (Obsidian Pool, Sylvan Spring, and 'Bison Pool') in Yellowstone National Park (Wyoming, USA). Microbial community structure was investigated by polymerase chain reaction (PCR) amplification of 16S rRNA gene sequences from DNA extracted from sediments of each hot spring, followed by molecular cloning. Both bacterial and archaeal DNA was retrieved from all samples. No Euryarchaea were found, but diverse Crenarchaea exist in all three pools, particularly affiliating with deep-branching, but uncultivated organisms. In addition, cloned DNA affiliating with the Desulphurococcales and Thermoproteales was identified, but the distribution of taxa differs in each hot spring. The bacterial community at all three locations is dominated by members of the Aquificales and Thermodesulfobacteriales, indicating that the 'knallgas' reaction (aerobic hydrogen oxidation) may be a central metabolism in these ecosystems. To provide geochemical context for the microbial community structures, energy-yields for a number of chemolithoautotrophic reactions are provided for >80 sampling sites in Yellowstone, including Obsidian Pool, Sylvan Spring, and 'Bison Pool'. This energy profile shows that the knallgas reaction is just one of many exergonic reactions in the Yellowstone hot springs, that energy-yields for certain reactions can vary substantially from one site to the next, and that few of the demonstrated exergonic reactions are known to support microbial metabolism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available