4.6 Article

Magnetic-field symmetry of pump currents of adiabatically driven mesoscopic structures -: art. no. 035324

Journal

PHYSICAL REVIEW B
Volume 72, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.72.035324

Keywords

-

Ask authors/readers for more resources

We examine the scattering properties of a slowly and periodically driven mesoscopic sample using the Floquet function approach. One might expect that at sufficiently low driving frequencies it is only the frozen scattering matrix which is important. The frozen scattering matrix reflects the properties of the sample at a given instant of time. Indeed many aspects of adiabatic scattering can be described in terms of the frozen scattering matrix. However, we demonstrate that the Floquet scattering matrix, to first order in the driving frequency, is determined by an additional matrix which reflects the fact that the scatterer is time dependent. This low-frequency irreducible part of the Floquet matrix has symmetry properties with respect to time and/or a magnetic field direction reversal opposite to that of the frozen scattering matrix. Using the adiabatic decomposition of the Floquet scattering matrix we split the dc current flowing through the pump into several parts with well defined properties with respect to a magnetic field inversion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available