4.5 Review

Protein splicing mechanisms and applications

Journal

IUBMB LIFE
Volume 57, Issue 7, Pages 469-476

Publisher

WILEY
DOI: 10.1080/15216540500163343

Keywords

intein; protein splicing; expressed protein ligation; activated ester; biotechnology; enzyme mechanism

Ask authors/readers for more resources

Inteins are protein splicing elements that employ standard enzyme strategies to excise themselves from precursor proteins and ligate the surrounding sequences (exteins). The protein splicing pathway consists of four nucleophilic displacements directed by the intein plus the first C-extein residue. The intein active site(s) are formed by folding of the intein within the precursor, which brings together the splice junctions and internal intein residues that assist catalysis. Inteins with non-canonical catalytic residues splice by modified pathways. Understanding intein proteolytic cleavage and ligation activities has led to the development of many novel applications in the fields of protein engineering, enzymology, microarray production, target detection and activation of transgenes in plants. Recent advances include intein-mediated attachment of proteins to solid supports for microarray or western blot analysis, linking nucleic acids to proteins and controllable splicing, which converts inteins into molecular switches.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available