4.5 Article

Influence of the alkali metal salt on the properties of solid electrolytes derived from a Lewis acidic polyether

Journal

SOLID STATE IONICS
Volume 176, Issue 23-24, Pages 1849-1859

Publisher

ELSEVIER
DOI: 10.1016/j.ssi.2005.05.014

Keywords

polymer electrolytes; anion trapping; lithium salts; ionic conductivity; electrochromic windows

Ask authors/readers for more resources

A polyether containing Lewis acidic boron atoms in its branched chain architecture was synthesised by a condensation reaction of boron trioxide, triethylene glycol monomethyl ether and poly(ethylene glycol), the latter having a molecular weight of 300 g/mol. Electrolytes based on this polymer and several different alkali metal salts were prepared and investigated. The state of the ions in the electrolytes was studied by FTIR spectroscopy, which detected the presence of ion pairs in electrolytes containing lithium triflate and lithium bis(trifluoromethane)sulfonimide (LiTFSI) salt. By thermogravimetry, all the electrolytes except those containing LiCl were found to be stable up to at least 150 degrees C. In general, an increased hardness of the basic anion gave rise to a decrease in the thermal stability. The reason behind this was thought to be an increasing destabilisation of the Lewis acidic boronate esters by interactions with the anions. The ionic conductivity of the electrolytes followed Vogel - Tammann - Fulcher (VTF) relationships, and was consistently found to increase with a decreased hardness of the basic anion. Consequently, the lowest conductivity at 30 degrees C for electrolytes with a salt concentration corresponding to [EO]: [Li] similar to 46 : 1 was measured for LiCl, 4 x 10(-6) S/cm, while the corresponding highest conductivity, 8 x 10(-5) S/cm, was recorded for the LiTFSI electrolyte. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available