4.4 Article

Constitutive Expression of Yarrowia lipolytica Lipase LIP2 in Pichia pastoris Using GAP as Promoter

Journal

APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
Volume 166, Issue 5, Pages 1355-1367

Publisher

HUMANA PRESS INC
DOI: 10.1007/s12010-011-9524-4

Keywords

Lipase; Yarrowia lipolytica; Pichia pastoris; Constitutive expression; GAP promoter; Fed-batch culture

Funding

  1. National Natural Science Foundation of P.R. China (NSFC) [31070089, 31170078]
  2. National High Technology Research and Development Program of China (863 Program) [2010AA101501, 2011AA02A204]
  3. Natural Science Foundation of Hubei Province [2009CDA046]

Ask authors/readers for more resources

A gene encoding Yarrowia lipolytica lipase LIP2 ( YlLIP2) was cloned into a constitutive expression vector pGAPZ alpha A and electrotransformed into the Pichia pastoris X-33 strain. The high-yield clones obtained by high copy and enzyme activity screening were chosen as the host strains for shaking flask and fermentor culture. The results showed that glucose was the optimum carbon source for YlLIP2 production, and the maximum hydrolytic activity of recombinant YlLIP2 reached 1,315 U/ml under the flask culture at 28 degrees C, pH 7.0, for 48 h. The fed-batch fermentation was carried out in 3- and 10-l bioreactors by continuously feeding glucose into the growing medium for achieving high cell density and YlLIP2 yields. The maximum hydrolytic activity of YlLIP2 and cell density obtained in the 3-l bioreactor were 10,300 U/ml and 116 g dry cell weight ( DCW)/l, respectively. The peak hydrolytic activity of YlLIP2 and cell density were further improved in the 10-l fermentor where the values respectively attained were 13,500 U/ml and 120 g DCW/l. The total protein concentration in the supernatant reached 3.3 g/l and the cell viability remained approximately 99% after 80 h of culture. Furthermore, the recombinant YlLIP2 produced in P. pastoris pGAP and pAOX1 systems have similar content of sugar (about 12%) and biochemical characteristics. The above results suggest that the GAP promoter-derived expression system of P. pastoris is effective for the expression of YlLIP2 by high cell density culture and is probably an alternative to the conventional AOX1 promoter expression system in large-scale production of industrial lipases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available