4.4 Article

Intrinsic Characteristics of Cr6+-Resistant Bacteria Isolated from an Electroplating Industry Polluted Soils for Plant Growth-Promoting Activities

Journal

APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
Volume 167, Issue 6, Pages 1653-1667

Publisher

SPRINGER
DOI: 10.1007/s12010-012-9606-y

Keywords

PGPB; Chromium; IAA; Siderophore; Phosphate solubilization; SEM-EDAX

Ask authors/readers for more resources

The Cr6+-resistant plant growth-promoting bacteria was isolated from soil samples that were collected from an electroplating industry at Coimbatore, India, that had tolerated chromium concentrations up to 500 mg Cr6+/L in Luria-Bertani medium. Based on morphology, physiology, and biochemical characteristics, the strain was identified as Bacillus sp. following the Bergey's manual of determinative bacteriology. Evaluation of plant growth-promoting parameters has revealed the intrinsic ability of the strain for the production of indole-3-acetic acid (IAA), siderophore, and solubilization of insoluble phosphate. Bacillus sp. have utilized tryptophan as a precursor for their growth and produced IAA (122 mu g/mL). Bacillus sp. also exhibited the production of siderophore that was tested qualitatively using Chrome Azurol S (CAS) assay solution and utilized the insoluble tricalcium phosphate as the sole source of phosphate exhibiting higher rate of phosphate solubilization after 72 h of incubation (1.45 mu g/mL). Extent of Cr6+ uptake and accumulation of Cr6+ in the cell wall of Bacillus sp. was investigated using atomic absorption spectrophotometer and scanning electron microscope-energy dispersive spectroscopy, respectively. The congenital capability of this Cr6+-resistant plant growth-promoting Bacillus sp. could be employed as bacterial inoculum for the improvement of phytoremediation in heavy metal contaminated soils.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available