4.7 Review

Proxy-based Northern Hemisphere surface temperature reconstructions: Sensitivity to method, predictor network, target season, and target domain

Journal

JOURNAL OF CLIMATE
Volume 18, Issue 13, Pages 2308-2329

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI3351.1

Keywords

-

Ask authors/readers for more resources

Results are presented from a set of experiments designed to investigate factors that may influence proxy-based reconstructions of large-scale temperature patterns in past centuries. The factors investigated include 1) the method used to assimilate proxy data into a climate reconstruction, 2) the proxy data network used, 3) the target season, and 4) the spatial domain of the reconstruction. Estimates of hemispheric-mean temperature are formed through spatial averaging of reconstructed temperature patterns that are based on either the local calibration of proxy and instrumental data or a more elaborate multivariate climate field reconstruction approach. The experiments compare results based on the global multiproxy dataset used by Mann and coworkers, with results obtained using the extratropical Northern Hemisphere (NH) maximum latewood tree-ring density set used by Briffa and coworkers. Mean temperature reconstructions are compared for the full NH (Tropics and extratropics, land and ocean) and extratropical continents only, with varying target seasons (cold-season half year, warm-season half year, and annual mean). The comparisons demonstrate dependence of reconstructions on seasonal, spatial, and methodological considerations, emphasizing the primary importance of the target region and seasonal window of the reconstruction. The comparisons support the generally robust nature of several previously published estimates of NH mean temperature changes in past centuries and suggest that further improvements in reconstructive skill are most likely to arise from an emphasis on the quality, rather than quantity, of available proxy data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available