4.4 Article

Negative refraction of ultra-short electromagnetic pulses

Journal

APPLIED PHYSICS B-LASERS AND OPTICS
Volume 81, Issue 2-3, Pages 393-402

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00340-005-1892-4

Keywords

-

Ask authors/readers for more resources

We study pulse propagation across a boundary that separates an ordinary medium from a medium with simultaneously negative dielectric permittivity and magnetic permeability. Solving Maxwell's equations with two spatial coordinates (one longitudinal, one transverse) and time we find negative refraction as the wave packet undergoes significant and unusual shape distortions. The pulse acquires and maintains a chirp as it traverses the interface, as expected, but with a sign that is opposite to the chirp attained upon traversal into a positive-index material. Both a direct calculation of the spatial derivative of the instantaneous, local phase of the pulse and a Fourier analysis of the signal reveal the same inescapable fact: that inside a negative-index material, a transmitted, forward-moving wave packet is indeed a superposition of purely negative wave vectors. The central findings of this paper are a confirmation that causality is not violated in the short-pulse regime, and that energy and group velocities never exceed the speed of light in vacuum.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available