4.4 Article

Amperometric Phenol Biosensor Based on Horseradish Peroxidase Entrapped PVF and PPy Composite Film Coated GC Electrode

Journal

APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
Volume 160, Issue 3, Pages 856-867

Publisher

SPRINGER
DOI: 10.1007/s12010-009-8534-y

Keywords

Phenol biosensor; Conducting polymer; HRP; PVF; Polypyrrole

Funding

  1. GYTE

Ask authors/readers for more resources

Polyvinylferrocene (PVF) was used as a mediator for the fabrication of a horseradish peroxidase (HRP)-modified electrode to detect phenol derivatives via a composite polymeric matrix of conducting polypyrrole (PPy). Through an electropolymerization process, enzyme HRP was entrapped with PPy in a three-electrode system onto a glassy carbon electrode previously covered with PVF, resulting in a composite polymeric matrix. Steady-state amperometric measurements were performed at -200 mV vs. Ag/AgCl in aqueous phosphate buffer containing NaCl 0.1 M (pH 6.8) in the presence of hydrogen peroxide. The response of the HRP-modified PVF electrode was investigated for various phenol derivatives, which were 4-chlorophenol, phenol, catechol, hydroquinone, 2-aminophenol, pyrogallol, m-cresol, and 4-methoxyphenol. Analytical parameters for the fabricated PVF electrode were obtained from the calibration curves. The highest sensitivity was obtained from the calibration of 4-chlorophenol as 29.91 nA/mu M. The lowest detection limit was found to be 0.22 mu M (S/N = 3) for catechol, and the highest detection limit was found to be 0.79 mu M (S/N = 3) for 4-methoxyphenol among the tested derivatives. The biosensor can reach 95% of steady-state current in about 5 min. The electrode is stable for 2 months at 4 A degrees C.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available