4.5 Article

Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent

Journal

ANNALS OF BIOMEDICAL ENGINEERING
Volume 33, Issue 7, Pages 963-971

Publisher

SPRINGER
DOI: 10.1007/s10439-005-3555-3

Keywords

osteoblasts; extracellular matrix; atomic force microscopy; modulus

Funding

  1. NIAMS NIH HHS [AR46568, AR48287] Funding Source: Medline

Ask authors/readers for more resources

The actin and microtubule cytoskeleton have been found to contribute to the elastic modulus of cells, which may be modulated by adhesion to extracellular matrix (ECM) proteins and subsequent alterations in the cytoskeleton. In this study, the apparent elastic modulus (E-app) of osteoblast-like MC3T3-E1 cells adhered to fibronectin (FN), vitronectin (VN), type I collagen (COLI), fetal bovine serum (FBS), or poly-l-lysine (PLL), and bare glass were determined using an atomic force microscope (AFM). The E-app of osteoblasts adhered to ECM proteins (FN, VN, COLI, and FBS) that bind cells via integrins were higher compared to cells on glass and PLL, which adhere cells through nonspecific binding. Also, osteoblasts adhered to FN, VN, COLI, and FBS had F-actin stress fiber formation, while osteoblasts on glass and PLL showed few F-actin fibers. Disruption of the actin cytoskeleton decreased E-app of osteoblasts plated on FN to the level of osteoblasts plated on glass, while microtubule disruption had no significant effect. This suggests that the elevated modulus of osteoblasts adhered to FN was due to remodeling of the actin cytoskeleton upon adhesion to ECM proteins. Modulation of cell stiffness upon adhesion to various substrates may influence mechanosignal transduction in osteoblasts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available