4.5 Article

Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues

Journal

BIOPHYSICAL JOURNAL
Volume 89, Issue 1, Pages 581-591

Publisher

CELL PRESS
DOI: 10.1529/biophysj.105.061911

Keywords

-

Categories

Ask authors/readers for more resources

We present a vibrational imaging study of axonal myelin under physiological conditions by laser-scanning coherent anti-Stokes Raman scattering (CARS) microscopy. We use spinal cord white matter strips that are isolated from guinea pigs and kept alive in oxygen bubbled Krebs' solution. Both forward-and epi-detected CARS are used to probe the parallel axons in the spinal tissue with a high vibrational contrast. With the CARS signal from CH2 vibration, we have measured the ordering degree and the spectral pro. le of myelin lipids. Via comparison with the ordering degrees of lipids in myelin figures formed of controlled lipid composition, we show that the majority of the myelin membrane is in the liquid ordered phase. By measuring the myelin thickness and axon diameter, the value of g ratio is determined to be 0.68 with forward- and 0.63 with epi-detected CARS. Detailed structures of the node of Ranvier and Schmidt-Lanterman incisure are resolved. We have also visualized the ordering of water molecules between adjacent bilayers inside the myelin. Our observations provide new insights into myelin organization, complementary to the knowledge from light and electron microscopy studies of fixed and dehydrated tissues. In addition, we have demonstrated simultaneous CARS imaging of myelin and two-photon excitation fluorescence imaging of intra- and extraaxonal Ca2+. The current work opens up a new approach to the study of spinal cord injury and demyelinating diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available