4.7 Article Proceedings Paper

Face transfer with multilinear models

Journal

ACM TRANSACTIONS ON GRAPHICS
Volume 24, Issue 3, Pages 426-433

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.1145/1073204.1073209

Keywords

facial animation; computer vision-tracking

Ask authors/readers for more resources

Face Transfer is a method for mapping videorecorded performances of one individual to facial animations of another. It extracts visemes (speech-related mouth articulations), expressions, and three-dimensional (3D) pose from monocular video or film footage. These parameters are then used to generate and drive a detailed 3D textured face mesh for a target identity, which can be seamlessly rendered back into target footage. The underlying face model automatically adjusts for how the target performs facial expressions and visemes. The performance data can be easily edited to change the visemes, expressions, pose, or even the identity of the target-the attributes are separably controllable. This supports a wide variety of video rewrite and puppetry applications. Face Transfer is based on a multilinear model of 3D face meshes that separably parameterizes the space of geometric variations due to different attributes (e.g., identity, expression, and viseme). Separability means that each of these attributes can be independently varied. A multilinear model can be estimated from a Cartesian product of examples (identities x expressions x visemes) with techniques from statistical analysis, but only after careful preprocessing of the geometric data set to secure one-to-one correspondence, to minimize cross-coupling artifacts, and to fill in any missing examples. Face Transfer offers new solutions to these problems and links the estimated model with a face-tracking algorithm to extract pose, expression, and viseme parameters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available