4.7 Article

Application of metabolome data in functional genomics: A conceptual strategy

Journal

METABOLIC ENGINEERING
Volume 7, Issue 4, Pages 302-310

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymben.2005.05.003

Keywords

functional genomics; metabolome; silent mutations; lin-log kinetics; mass spectrometry; flux analysis; elasticity

Ask authors/readers for more resources

A gene with yet unknown physiological function can be studied by changing its expression level followed by analysis of the resulting phenotype. This type of functional genomics study can be complicated by the occurrence of 'silent mutations', the phenotypes of which are not easily observable in terms of metabolic fluxes (e.g., the growth rate). Nevertheless, genetic alteration may give rise to significant yet complicated changes in the metabolome. We propose here a conceptual functional genomics strategy based on microbial metabolome data, which identifies changes in in vivo enzyme activities in the mutants. These predicted changes are used to formulate hypotheses to infer unknown gene functions. The required metabolome data can be obtained solely from high-throughput mass spectrometry analysis, which provides the following in vivo information: (1) the metabolite concentrations in the reference and the mutant strain; (2) the metabolic fluxes in both strains and (3) the enzyme kinetic parameters of the reference strain. We demonstrate in silico that changes in enzyme activities can be accurately predicted by this approach, even in 'silent mutants'. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available