4.8 Article

Hole-induced quenching of triplet and singlet excitons in conjugated polymers

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 127, Issue 26, Pages 9556-9560

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja051271i

Keywords

-

Ask authors/readers for more resources

Quantitative information on the mechanisms and rates of hole (radical cation)-induced quenching of triplet and singlet excitons in the conjugated polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] has been acquired by a new technique, fluorescence-voltage time-resolved single molecule spectroscopy (FV-TR-SMS). FV-TR-SMS measures the fluorescence intensity of a single conjugated polymer molecule that is embedded in a capacitor-like device while simultaneously modulating the bias on the device and the irradiation intensity. The results demonstrate that triplet excitons are efficiently quenched by holes in conjugated polymers for hole densities > 10(16) charges/cm(3), while singlet excitons are quenched with a much lower efficiency. Detailed kinetic analysis shows that the greater efficiency for quenching of triplets by holes (compared to that for singlets) is due to a > 10(6) times longer exciton lifetime for triplets. In fact, the results suggest that while singlet quenching is less efficient due to a much shorter singlet lifetime, the rate constant for the quenching of singlets by holes actually exceeds that for triplets by several orders of magnitude.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available