4.4 Article

Influence of fracture gap size on the pattern of long bone healing:: a computational study

Journal

JOURNAL OF THEORETICAL BIOLOGY
Volume 235, Issue 1, Pages 105-119

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2004.12.023

Keywords

bone healing; fracture callus; mechano-biology; gap size

Ask authors/readers for more resources

Following fractures, bones restore their original structural integrity through a complex process in which several cellular events are involved. Among other factors, this process is highly influenced by the mechanical environment of the fracture site. In this study, we present a mathematical model to simulate the effect of mechanical stimuli on most of the cellular processes that occur during fracture healing, namely proliferation, migration and differentiation. Oil the basis of these three processes, the model then simulates the evolution of geometry, distributions of cell types and elastic properties inside a healing fracture. The three processes were implemented in a Finite Element code as a combination of three coupled analysis stages: a biphasic, a diffusion and a thermoelastic step. We tested the mechano-biological regulatory model thus created by simulating the healing patterns of fractures with different gap sizes and different mechanical stimuli. The callus geometry, tissue differentiation patterns and fracture stiffness predicted by the model were similar to experimental observations for every analysed situation. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available