4.5 Article

Transport of neutral solute in articular cartilage: effects of loading and particle size

Publisher

ROYAL SOC
DOI: 10.1098/rspa.2005.1461

Keywords

cartilage; convection; diffusion; deformation; solute transport

Ask authors/readers for more resources

We investigate the influence that matrix structure, size of diffusing molecules and type and intensity of mechanical loading have on the transport of neutral solutes in articular cartilage. Although this type of investigation has been performed in the past, earlier researchers assumed a constant diffusion coefficient. By contrast, our diffusion coefficient depends on the local deformation of the matrix, and thus varies both in space and in time during an experiment. We derive a three-dimensional formulation of the problem based on mixture theory and utilize the commercial finite-element code ABAQUS to study it numerically. We also make use of the Cohen-Turnbull-Yasuda model to correlate the decrease of the diffusion coefficient with the increase in tortuosity, owing to the presence of the matrix. Under appropriate circumstances, the equations derived here reduce to the classical convection/diffusion equation and the equations of the biphasic cartilage model. Even though we chose axisymmetric sample geometry for the present calculations, the model can easily be applied to irregular three-dimensional samples. Our results reinforce and refine previously published studies. The neutral solute's rate of diffusion is reduced under static compression, due to the strain dependence of the diffusion coefficient; an increase in static compression leads to a decrease in the rate of transport of solutes of all sizes. Dynamic loading, on the other hand, augments solute transport due to convection, depending on particle size. The transport of small molecular size solute is moderately enhanced, but only within the surface layer; however, the rate of transport of large molecule solute is greatly increased, even in the deep layer of the cartilage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available