4.3 Article

Transcription promotes guanine to thymine mutations in the non-transcribed strand of an Eseherichia coli gene

Journal

DNA REPAIR
Volume 4, Issue 7, Pages 806-813

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.dnarep.2005.04.017

Keywords

reactive oxygen species; singlet oxygen; hydroxyl radical; G to T transversions

Ask authors/readers for more resources

Transcription of DNA opens the chromatin, causes topological changes in DNA and transiently exposes the two strands to different biochemical environments. Consequently, it has long been argued that transcription may promote damage to DNA and there are data in Escherichia coli and yeast supporting a correlation between high transcription and mutations. We examined the transcription-dependence of the reversion of a nonsense codon (TGA) in E. coli and found that there was a strong dependence of mutations on transcription in strains defective in the repair of 8-oxoguanine in DNA. Under conditions of high transcription there was a three to live-fold increase in mutations that changed TGA in the non-transcribed strand to a sense codon. Furthermore, in both mutY and mutM mutY backgrounds the mutations were overwhelmingly G:C to T:A. In contrast, when the TGA was in the transcribed strand in relation with the inducible promoter. high transcription decreased the rate of reversion. Similar results were obtained in a strain defective in the transcription-repair coupling factor, Mfd, suggesting that transcription dependent increase in base substitutions does not require transcription-dependent DNA repair. However, Mfd does modulate the magnitude of the mutagenic effect of transcription. These data are consistent with a model in which the non-transcribed strand is more susceptible to oxidative damage during transcription than the transcribed strand. These results suggest that the magnitudes of individual base substitutions and their relative numbers in other studies of mutational spectra tray also be affected by transcription. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available