4.5 Article

Major and trace element geochemistry and Os isotopic composition of metalliferous umbers from the Late Cretaceous Japanese accretionary complex

Journal

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
Volume 6, Issue -, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2005GC000920

Keywords

geochemistry; Os isotope; umber; accretionary complex; metalliferous sediment; Late Cretaceous; geochemistry : radiogenic isotope geochemistry; geochemistry : marine geochemistry; geochemistry : major and trace element geochemistry

Ask authors/readers for more resources

Metalliferous umbers and red shales occur as unique products of the Kula-Pacific ridge-forearc collision in the Late Cretaceous Shimanto Supergroup, an accretionary complex in Japan. These umbers are closely associated with greenstones of mid-ocean ridge basalt (MORB) origin and are regarded as hydrothermal metalliferous precipitates related to MOR-type volcanism. The umbers and red shales were deposited in the trench area where both terrigenous detritus from land and hydrothermal metalliferous particulates from a MOR were supplied simultaneously. Besides a predominance of Fe and Mn, the umbers exhibit remarkable enrichments in P, V, Co, Ni, Zn, Y, Mo, rare earth elements (REEs), and Os relative to continental crustal abundances. The X/Fe (X=Mn, P, V, Co, Ni, Zn, Y, and REEs) ratios and PAAS-normalized REE patterns of the umbers are very similar to those of modern hydrothermal plume fallout precipitates deposited on flanks of MOR. This indicates that the umbers preserve primary geochemical signatures of hydrothermal metalliferous sediments that scavenged seawater-derived elements and thus can be used as a proxy for Late Cretaceous seawater. The marine Os-187/Os-188 ratios reconstructed from the late Maastrichtian umbers range from 0.42 to 0.56 and are very consistent with recent data obtained from the Pacific and Atlantic pelagic carbonates that record an abrupt decline from 0.55 to 0.4 during the period between 67.0 Ma and 65.7 Ma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available