4.6 Article

Microbial Community Dynamics and Assembly Follow Trajectories of an Early-Spring Diatom Bloom in a Semienclosed Bay

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 84, Issue 18, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.01000-18

Keywords

microbial communities; assembly mechanism; diatom bloom; metagenomic prediction

Funding

  1. National Natural Science Foundation of China [41706132]
  2. Zhejiang Provincial Natural Science Foundation of China [LQ17D060001]
  3. Natural Science Foundation of Ningbo [2016A610094]
  4. Open Fund of Key Laboratory of Integrated Marine Monitoring and Applied Technologies for Harmful Algal Blooms, State Oceanic Administration [MATHAB201708]
  5. K. C. Wong Magna Fund of Ningbo University

Ask authors/readers for more resources

Harmful algal blooms (HABs) are serious ecological disasters in coastal areas, significantly influencing biogeochemical cycles driven by bacteria. The shifts in microbial communities during HABs have been widely investigated, but the assembly mechanisms of microbial communities during HABs are poorly understood. Here, using 16S rRNA gene amplicon sequencing, we analyzed the microbial communities during an early-spring diatom bloom, in order to investigate the dynamics of microbial assembly processes. Rhodobacteraceae, Flavobacteriaceae, and Microbacteriaceae were the main bacterial families during the bloom. The 30 most abundant operational taxonomic units (OTUs) segregated into 4 clusters according to specific bloom stages, exhibiting clear successional patterns during the bloom process. The succession of microbial communities correlated with changes in the dynamics of algal species. Based on the beta-nearest taxon distance, we constructed a simulation model, which demonstrated that the assembly of microbial communities shifted from strong heterogenous selection in the early stage of the bloom to stochasticity in the middle stage and then to strong homogeneous selection in the late and after-bloom stages. These successions were driven mainly by chlorophyll a contents, which were affected mainly by Skeletonema costatum. Moreover, functional prediction of microbial communities showed that microbial metabolic functions were significantly related to nitrogen metabolism. In summary, our results clearly suggested a dominant role of determinacy in microbial community assembly in HABs and will facilitate deeper understanding of the ecological processes shaping microbial communities during the algal bloom process. IMPORTANCE Harmful algal blooms (HABs) significantly influence biogeochemical cycles driven by bacteria. The shifts in microbial communities during HABs have been studied intensively, but the assembly mechanisms of microbial communities during HABs are poorly understood, with limited investigation of the balance of deterministic and stochastic processes in shaping microbial communities in HABs. In this study, the dynamics and assembly of microbial communities in an early-spring diatom bloom process were investigated. Our data both confirm previously observed general microbial successional patterns and show new detailed mechanisms for microbial assembly in HABs. These results will facilitate deeper understanding of the ecological processes shaping microbial communities in HABs. In addition, predictions of metabolic potential in this study will facilitate understanding of the influence of HABs on nitrogen metabolism in marine environments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available