4.7 Article

Protective anti-V antibodies inhibit Pseudomonas and Yersinia translocon assembly within host membranes

Journal

JOURNAL OF INFECTIOUS DISEASES
Volume 192, Issue 2, Pages 218-225

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1086/430932

Keywords

-

Ask authors/readers for more resources

Pathogenic Yersinia species and Pseudomonas aeruginosa share a similar type III secretion/translocation system. The translocation system consists of 3 secreted proteins, YopB/PopB, YopD/PopD, and LcrV/PcrV; the latter is known to be a protective antigen. In an in vitro assay, the translocation system causes the lysis of erythrocytes infected with wild-type (wt) P. aeruginosa. wt Y. enterocolitica is not hemolytic, but a multiknockout mutant deprived of all the effectors and of YopN (Delta HOPEMN) is hemolytic. In the presence of antibodies against PcrV and Y. pestis LcrV, the hemolytic activity of P. aeruginosa was inhibited. Similarly, the hemolytic activity of Delta HOPEMN was inhibited in the presence of anti-LcrV antibodies. The assembly of the translocon, composed of PopB/D and YopB/D proteins, was disturbed in immunoprotected erythrocyte membranes, mimicking the phenotypes of V knockout mutants. Thus, protective antibodies against the V antigens of Yersinia species and P. aeruginosa act at the level of the formation of the translocon pore in membranes of infected host cells by blocking the function of LcrV/PcrV. The hemolysis assay could be adapted for high-throughput screening of anti-infectious compounds that specifically target the type III translocon.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available