4.6 Article

Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry

Journal

SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY
Volume 60, Issue 6, Pages 792-804

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.sab.2005.05.006

Keywords

laser-induced breakdown spectroscopy (LIBS); double-pulse; aluminum; Echelle spectrometer; self-absorption

Categories

Ask authors/readers for more resources

Two Nd:YAG lasers emitting at 532 nm were combined in the same direction (collinear beam geometry) for double-pulse laser-induced breakdown spectroscopy studies on aluminum samples at atmospheric pressure in air. The influence of the delay between the two laser pulses was investigated for the background emission, for lines detected in aluminum samples and for atmospheric lines with different detection systems (photomultiplier tube, Czerny-Turner spectrometer and echelle spectrometers). The optimization of the delay between the two laser pulses depended on the excitation energy levels of the emission lines: two optima of interpulse delays were observed in the collinear geometry. Different regimes of laser-plasma interactions were discussed depending on the interpulse delay for aluminum samples. Furthermore, the effect of the sampling geometry, in terms of lens-to-sample distance, focal length of the focusing lens, was studied to determine parameters influencing the single- and double-pulse scheme. Besides, the analytical performance of the system was evaluated to characterize the advantages of the double-pulse laser-induced breakdown spectroscopy in terms of improvement of sensitivity and reduction of self-absorption effect for aluminum samples. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available