4.7 Article

Aminomethanol water elimination: Theoretical examination

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 123, Issue 3, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1935510

Keywords

-

Ask authors/readers for more resources

The mechanism for the formation of hexamethylenetetraamine predicts the formation of aminomethanol from the addition of ammonia to formaldehyde. This molecule subsequently undergoes unimolecular decomposition to form methanimine and water. Aminomethanol is the predicted precursor to interstellar glycine, and is therefore of great interest for laboratory spectroscopic study, which would serve as the basis for observational searches. The height of the water loss barrier is therefore useful in the determination of an appropriate experimental approach for spectroscopic characterization of aminomethanol. We have determined the height of this barrier to be 55 kcal/mol at ambient temperatures. In addition, we have determined the infinite-pressure Rice-Ramsperger-Kassel-Marcus unimolecular decomposition rate to be < 10(-25) s(-1) at 300 K, indicating gas-phase kinetic stability for typical laboratory and hot core temperatures. Therefore, spectroscopic characterization of and observational searches for this molecule should be straightforward provided an efficient formation mechanism can be found. (c) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available