4.6 Article

Mechanisms underlying resistance of pancreatic islets from ALR/Lt mice to cytokine-induced destruction

Journal

JOURNAL OF IMMUNOLOGY
Volume 175, Issue 2, Pages 1248-1256

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.175.2.1248

Keywords

-

Categories

Funding

  1. NIAID NIH HHS [AI 056374] Funding Source: Medline
  2. NIDDK NIH HHS [DK 36175, DK 27722, DK 09865] Funding Source: Medline

Ask authors/readers for more resources

Nuclear and mitochondrial genomes combine in ALR/Lt mice to produce systemically elevated defenses against free radical damage, rendering these mice resistant to immune-mediated pancreatic islet destruction. We analyzed the mechanism whereby isolated islets from ALR mice resisted proinflammatory stress mediated by combined cytokines (IL-1 beta, TNF-alpha, and IFN-gamma) in vitro. Such damage entails both superoxide and NO radical generation, as well as peroxynitrite, resulting from their combination. In contrast to islets from other mouse strains, ALR islets expressed constitutively higher glutathione reductase, glutathione peroxidase, and higher ratios of reduced to oxidized glutathione. Following incubation with combined cytokines, islets from control strains produced significantly higher levels of hydrogen peroxide and NO than islets from ALR mice. Nitrotyrosine was generated in NOD and C3H/HeJ islets but not by ALR islets. Western blot analysis showed that combined cytokines up-regulated the NF-kappaB inducible NO synthase in NOD-Rag and C3H/HeJ islets but not in ALR islets. This inability of cytokine-treated ALR islets to up-regulate inducible NO synthase and produce NO correlated both with reduced kinetics of IkappaB degradation and with markedly suppressed NF-kappaB p65 nuclear translocation. Hence, ALR/Lt islets resist cytokine-induced diabetogenic stress through enhanced dissipation and/or suppressed formation of reactive oxygen and nitrogen species, impaired IkappaB degradation, and blunted NF-kappaB activation. Nitrotyrosylation of beta cell proteins may generate neoantigens; therefore, resistance of ALR islets to nitrotyrosine formation may, in part, explain why ALR mice are resistant to type 1 diabetes when reconstituted with a NOD immune system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available