4.6 Article

Insig required for sterol-mediated inhibition of Scap/SREBP binding to COPII proteins in vitro

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 28, Pages 26483-26490

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M504041200

Keywords

-

Funding

  1. NHLBI NIH HHS [HL20948] Funding Source: Medline

Ask authors/readers for more resources

When added to living cells, sterols such as cholesterol and 25-hydroxycholesterol block the lateral movement of sterol regulatory element-binding proteins (SREBPs) into COPII-coated vesicles on endoplasmic reticulum ( ER) membranes and thereby prevent the SREBPs from reaching the Golgi complex for processing to the mature forms that activate cholesterol synthesis. Sorting of SREBPs into COPII vesicles is mediated by Sar1 and the coat proteins Sec23 and Sec24. Here, we explore the mechanism of sterol inhibition in vitro through use of protein pull-down assays. We show that addition of cholesterol or 25-hydroxycholesterol to microsomal membranes in vitro blocks Sar1-dependent binding of the Sec23/24 complex to Scap, the SREBP escort protein. This in vitro inhibition is dependent on the presence of Insig-1, an ER resident protein that is necessary for sterol-mediated inhibition of Scap/SREBP transport in intact cells. Sec23/24 binding to Scap requires the hexapeptide sequence MELADL located in a cytoplasmic loop of Scap. This hexapeptide acts as a sterol-regulated ER sorting signal. These studies define the biochemical parameters responsible for regulated sorting of an ER membrane protein into COPII-coated vesicles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available