4.1 Article

Rheology of polydisperse star polymer melts: Extension of the parameter-free tube model of Milner and McLeish to arbitrary arm-length polydispersity

Journal

MACROMOLECULAR THEORY AND SIMULATIONS
Volume 14, Issue 6, Pages 387-399

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/mats.200500008

Keywords

melt; poly (epsilon-caprol actone); rheology; star polymers; theory

Ask authors/readers for more resources

This paper considers the extension of the parameter-free tube model of Milner and McLeish for stress relaxation in melts of monodisperse star polymers to star polymers whose arms have a continuous molecular weight distribution such as the Flory distribution in the case of star-nylons and star-polyesters. Exact expressions are derived for the relaxation spectrum and the relaxation modulus for star polymers having an arbitrary continuous arm-length distribution. For a Flory distribution a comparison is made with results of dynamic measurements on a melt of 8-arm poly(e-caprolactone) (PCL) stars. An excellent quantitative agreement over a large frequency range is found, however, only if one treats, in contrast with the original parameter-free tube model approach, the entanglement molecular weight that determines the relaxation spectrum as a fitting parameter independent of the entanglement molecular weight of the linear PCL. This discrepancy is not in anyway related to the polydispersity in arm-length, but a consequence of the thermorheological complexity of the PCL stars. A similar discrepancy has been observed for hydrogenated polybutadiene stars, as described by Levine and Milner.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available