4.7 Article

Groundwater level forecasting using artificial neural networks

Journal

JOURNAL OF HYDROLOGY
Volume 309, Issue 1-4, Pages 229-240

Publisher

ELSEVIER
DOI: 10.1016/j.jhydrol.2004.12.001

Keywords

artificial neural networks; groundwater level forecasting; non-linear modeling; Messara Valley; aquifer overexploitation

Ask authors/readers for more resources

A proper design of the architecture of Artificial Neural Network (ANN) models can provide a robust tool in water resources modeling and forecasting. The performance of different neural networks in a groundwater level forecasting is examined in order to identify an optimal ANN architecture that can simulate the decreasing trend of the groundwater level and provide acceptable predictions up to 18 months ahead. Messara Valley in Crete (Greece) was chosen as the study area as its groundwater resources have being overexploited during the last fifteen years and the groundwater level has been decreasing steadily. Seven different types of network architectures and training algorithms are investigated and compared in terms of model prediction efficiency and accuracy. The different experiment results show that accurate predictions can be achieved with a standard feedforward neural network trained with the Levenberg-Marquardt algorithm providing the best results for up to 18 months forecasts. (c) 2004 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available