4.8 Article

Auditory hair cell-afferent fiber synapses are specialized to operate at their best frequencies

Journal

NEURON
Volume 47, Issue 2, Pages 243-254

Publisher

CELL PRESS
DOI: 10.1016/j.neuron.2005.06.004

Keywords

-

Categories

Funding

  1. NIDCD NIH HHS [R01-DC03896, R01 DC009913] Funding Source: Medline

Ask authors/readers for more resources

Auditory afferent fiber activity is driven by high-fidelity information transfer from the sensory hair cell. Presynaptic specializations, posited to maintain fidelity, are investigated at synapses with characteristic frequencies of 120 Hz and 320 Hz. Morphological data indicate that high-frequency cells have more synapses and higher vesicle density near dense bodies (DEls). Tracking vesicular release via capacitance changes identified three overlapping kinetic components of release corresponding to morphologically identified vesicle pools. High-frequency cells released faster; however, when normalized to release site number, low-frequency cells released faster, likely due to a greater Ca2+ load per synapse. The Ca2+-dependence of release was nonsaturating and independent of frequency, suggesting that release, not refilling, was rate limiting. A model of release derived from vesicle equilibration between morphologically defined pools reproduced the capacitance data, supporting a critical role in vesicle trafficking for DBs. The model suggests that presynaptic specializations enable synapses to operate most efficiently at their characteristic frequencies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available