4.6 Review

Infrared and Raman line shapes of dilute HOD in liquid H2O and D2O from 10 to 90 °C

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 109, Issue 28, Pages 6154-6165

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp0506540

Keywords

-

Ask authors/readers for more resources

A combined electronic structure/molecular dynamics approach was used to calculate infrared and isotropic Raman spectra for the OH or OD stretches of dilute HOD in D2O or H2O, respectively. The quantities needed to compute the infrared and Raman spectra were obtained from density functional theory calculations performed on clusters, generated from liquid-state configurations, containing an HOD molecule along with 4-9 solvent water molecules. The frequency, transition dipole, and isotropic transition polarizability were each empirically related to the electric field due to the solvent along the OH (or OD) bond, calculated on the H (or D) atom of interest. The frequency and transition dipole moment of the OH (or OD) stretch of the HOD molecule were found to be very sensitive to its instantaneous solvent environment, as opposed to the isotropic transition polarizability, which was found to be relatively insensitive to environment. Infrared and isotropic Raman spectra were computed within a molecular dynamics simulation by using the empirical relationships and semiclassical expressions for the line shapes. The line shapes agree well with experiment over a temperature range from 10 to 90 degrees C.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available