4.8 Article

Degradation of myosin light chain in isolated rat hearts subjected to ischemia-reperfusion injury - A new intracellular target for matrix metalloproteinase-2

Journal

CIRCULATION
Volume 112, Issue 4, Pages 544-552

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCULATIONAHA.104.531616

Keywords

proteins; myocardial stunning; metalloproteinases; myosin; reperfusion

Funding

  1. NHLBI NIH HHS [R01 HL071778, R01 HL071778-01A1, HL-071778, R01 HL071778-02] Funding Source: Medline

Ask authors/readers for more resources

Background - Matrix metalloproteinase-2 (MMP-2) contributes to cardiac dysfunction resulting from ischemia-reperfusion (I/R) injury. MMP-2 not only remodels the extracellular matrix but also acts intracellularly in I/R by degrading troponin I. Whether other intracellular targets exist for MMP-2 during I/R is unknown. Methods and Results - Isolated rat hearts were subjected to 20 minutes of ischemia and 30 minutes of reperfusion. The impaired recovery of mechanical function of the heart was attenuated by the MMP inhibitors o-phenanthroline or doxycycline. Quantitative 2D electrophoresis of homogenates of aerobically perfused hearts (control) or those subjected to I/R injury (in the presence or absence of MMP inhibitors) showed 3 low-molecular-weight proteins with levels that were significantly increased upon I/R injury and normalized to control levels by MMP inhibitors. Mass spectrometry analysis identified all 3 proteins as fragments of myosin light chain 1, which possesses theoretical cleavage recognition sequences for MMP-2 and is rapidly degraded by it in vitro. The association of MMP-2 with the thick myofilament in fractions prepared from I/R hearts was observed with immunogold electron microscopy, gelatin zymography for MMP-2 activity, and immunoprecipitation. MMP-2 was found to cleave myosin light chain 1 between tyrosine 189 and glutamine 190 at the C terminus. Conclusions - Our results demonstrate that myosin light chain 1 is another novel substrate for MMP-2 in the cardiomyocyte and that its degradation may contribute to contractile dysfunction resulting from I/R injury to the heart.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available