4.6 Article

Contribution of the carboxyl terminus of the VPAC1 receptor to agonist-induced receptor phosphorylation, internalization, and recycling

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 30, Pages 28034-28043

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M500449200

Keywords

-

Ask authors/readers for more resources

When exposed to vasoactive intestinal peptide ( VIP), the human wild type VPAC(1) receptor expressed in Chinese hamster ovary (CHO) cells is rapidly phosphorylated, desensitized, and internalized in the endosomal compartment and is not re-expressed at the cell membrane within 2 h after agonist removal. The aims of the present work were first to correlate receptor phosphorylation level to internalization and recycling, measured by flow cytometry and in some cases by confocal microscopy using a monoclonal antibody that did not interfere with ligand binding, and second to identify the phosphorylated Ser/Thr residues. Combining receptor mutations and truncations allowed identification of Ser(250) ( in the second intracellular loop), Thr(429), Ser(435), Ser(448) or Ser(449), and Ser(455) ( all in the distal part of the C terminus) as candidates for VIP-stimulated phosphorylation. The effects of single mutations were not additive, suggesting alternative phosphorylation sites in mutated receptors. Replacement of all of the Ser/Thr residues in the carboxyl-terminal tail and truncation of the domain containing these residues completely inhibited VIP-stimulated phosphorylation and receptor internalization. There was, however, no direct correlation between receptor phosphorylation and internalization; in some truncated and mutated receptors, a 70% reduction in phosphorylation had little effect on internalization. In contrast to results obtained on the wild type and all of the mutated or truncated receptors that still underwent phosphorylation, internalization of the severely truncated receptor was reversed within 2 h of incubation in the absence of the agonist. Receptor recovery was blocked by monensin, an endosome inhibitor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available