4.8 Article

Electron localization determines defect formation on ceria substrates

Journal

SCIENCE
Volume 309, Issue 5735, Pages 752-755

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1111568

Keywords

-

Ask authors/readers for more resources

The high performance of ceria (CeO(2)) as an oxygen buffer and active support for noble metals in catalysis relies on an efficient supply of lattice oxygen at reaction sites governed by oxygen vacancy formation. We used high-resolution scanning tunneling microscopy and density functional calculations to unravel the local structure of surface and subsurface oxygen vacancies on the (111) surface. Electrons left behind by released oxygen localize on cerium ions. Clusters of more than two vacancies exclusively expose these reduced cerium ions, primarily by including subsurface vacancies, which therefore play a crucial role in the process of vacancy cluster formation. These results have implications for our understanding of oxidation processes on reducible rare-earth oxides.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available