4.4 Article

A combined freeze-and-cut strategy for the description of large molecular systems using a localized orbitals approach

Journal

JOURNAL OF COMPUTATIONAL CHEMISTRY
Volume 26, Issue 10, Pages 1042-1051

Publisher

WILEY
DOI: 10.1002/jcc.20236

Keywords

local orbitals; CAS-SCF polyenals; ab initio

Ask authors/readers for more resources

A technique to reduce the computational effort in calculating ab initio energies using a localized orbitals approach is presented. By exploiting freeze strategy at the self-consistent field (SCF) level and a cut of the unneeded atomic orbitals, it is possible to perform a localized complete active space (CAS-SCF) calculation on a reduced system. This will open the possibility to perform ab initio treatments on very large molecular systems, provided that the chemically important phenomena happen in a localized zone of the molecule. Two test cases are discussed, to illustrate the performance of the method: the cis-trans interconversion curves for the (7Z)-13 ammoniotridec-7-enoate, which demonstrates the ability of the method to reproduce the interactions between charged groups; and the cisoid-transoid energy barrier for the aldehydic group in the C-13 polyenal molecule. (c) 2005 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available