4.4 Article Proceedings Paper

The vertical metal insulator semiconductor tunnel transistor: A proposed Fowler-Nordheim tunneling device

Journal

MICROELECTRONIC ENGINEERING
Volume 81, Issue 2-4, Pages 171-180

Publisher

ELSEVIER
DOI: 10.1016/j.mee.2005.03.003

Keywords

tunnel transistors; titanium dioxide; Fowler-Nordheim tunneling

Funding

  1. Engineering and Physical Sciences Research Council [GR/S09883/01] Funding Source: researchfish

Ask authors/readers for more resources

We propose a new field-effect transistor, the vertical metal insulator semiconductor tunnel transistor (VMISTT) which operates using gate modulation of the Fowler-Nordheim tunneling current through a metal insulator semiconductor (M-I-S) diode. The VMISTT has significant advantages over the metal-oxide-semiconductor field-effect transistor in device scaling. In order to allow room-temperature operation of the VMISTT, the tunnel oxide has to be optimized for the metal-to-insulator barrier height and the current-voltage characteristics. We have grown TiO2 layers as the tunnel insulator by oxidizing 7 and 10 nm thick Ti metal films vacuum-evaporated on silicon substrates, and characterized the films by current-voltage and capacitance-voltage techniques. The quality of the oxide films showed variations, depending on the oxidation temperatures in the range of 450-550 degrees C. Fowler-Nordheim tunneling was observed at low temperatures at bias voltage of 2 V and above and a barrier height of approximately 0.4 eV was calculated. Leakage currents present were due Schottky-barrier emission at room-temperature, and hopping at liquid nitrogen temperature. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available