4.6 Article

Quantum size effects in the surface energy of Pb/Si(111) film nanostructures studied by surface x-ray diffraction and model calculations

Journal

PHYSICAL REVIEW B
Volume 72, Issue 7, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.72.075402

Keywords

-

Ask authors/readers for more resources

We have used surface x-ray diffraction from a synchrotron source, along with models based upon a free-electron gas confined to a quantum well, to study quantum size effects in the surface energy of ultrathin Pb films grown on pretreated Si(111) substrates. Films grown at 110 K are smooth, but as they are annealed to near room temperature, their morphology is observed evolving through various metastable states and eventually to a roughened state in local equilibrium. Strong variations in the stability of different island heights are observed, consistent with quasibilayer oscillations in the surface energy found from the theoretical free-electron calculations. By analyzing the quasiequilibrium distribution of thicknesses, empirical information on the film surface energy is obtained for a wide range of thicknesses. The morphological annealing behavior of the films is also found to be explained by the deduced surface energy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available