4.6 Article

Altered posttranslational processing of glycoproteins in cerulein-induced pancreatitis

Journal

EXPERIMENTAL CELL RESEARCH
Volume 308, Issue 1, Pages 101-113

Publisher

ELSEVIER INC
DOI: 10.1016/j.yexcr.2005.04.003

Keywords

E-64-D; LAMP1; muclin; zymogen granule

Funding

  1. NIDDK NIH HHS [R01 DK055998-02, DK-55998, R01 DK055998-04, R01 DK055998, R01 DK055998-01A1, R01 DK055998-05, R01 DK055998-03] Funding Source: Medline

Ask authors/readers for more resources

Acute pancreatitis is an auto-digestive disease resulting in inflammation. At the cellular level, acute pancreatitis disrupts posttranslational protein processing and traffic in the secretory pathway, and zymogens become activated in the acinar cell. To better understand the disruption of the secretory pathway in pancreatitis, pulse-chase [S-35]met/cys analysis was used to study the effects of supramaximal cerulein stimulation on posttranslational modification in the secretory pathway of the major sulfated glycoprotein of the mouse pancreas, pro-Muclin, and the lysosomal membrane protein LAMP1. Maximal cerulein or high concentration bombesin stimulation had little effect on glycoprotein processing. By contrast, supramaximal cerulein stimulation strongly inhibited pro-Muclin processing as measured by the failure of Muclin to attain its normal mature size of 300 kDa and to become highly sulfated and decreased proteolytic cleavage of pro-Muclin to produce apactin. Digestion of immunoprecipitated [S-35]met/cys-labeled Muclin and LAMP1 with endoglycosidase H demonstrated that the supramaximal cerulein-induced block in processing occurred before the medial Golgi compartment. With supramaximal cerulein stimulation, vacuoles formed which contained Muclin, amylase, and LAMP1. Earlier autoradiographic studies showed that newly synthesized proteins end up in pancreatitis-associated vacuoles, so it is likely that glycoproteins with incomplete posttranslational processing are also present in vacuoles. Because glycoproteins are believed to protect the membranes of lysosomes and zymogen granules, when they are not correctly processed, their defensive mechanisms may be impaired, and this could contribute to vacuole fragility in pancreatitis. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available