4.6 Article

Metagenome Survey of a Multispecies and Alga-Associated Biofilm Revealed Key Elements of Bacterial-Algal Interactions in Photobioreactors

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 79, Issue 20, Pages 6196-6206

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.01641-13

Keywords

-

Funding

  1. research and development project Technologies for Exploiting the Resource Microalgae (TERM)
  2. BMBF Project ChemBiofilm
  3. Federal Graduate School C1-Chemistry in Resource and Energy Management (C1-REM) (Hamburg, Germany)

Ask authors/readers for more resources

Photobioreactors (PBRs) are very attractive for sunlight-driven production of biofuels and capturing of anthropogenic CO2. One major problem associated with PBRs however, is that the bacteria usually associated with microalgae in nonaxenic cultures can lead to biofouling and thereby affect algal productivity. Here, we report on a phylogenetic, metagenome, and functional analysis of a mixed-species bacterial biofilm associated with the microalgae Chlorella vulgaris and Scenedesmus obliquus in a PBR. The biofilm diversity and population dynamics were examined through 16S rRNA phylogeny. Overall, the diversity was rather limited, with approximately 30 bacterial species associated with the algae. The majority of the observed microorganisms were affiliated with Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes. A combined approach of sequencing via GS FLX Titanium from Roche and HiSeq 2000 from Illumina resulted in the overall production of 350 Mbp of sequenced DNA, 165 Mbp of which was assembled in larger contigs with a maximum size of 0.2 Mbp. A KEGG pathway analysis suggested high metabolic diversity with respect to the use of polymers and aromatic and nonaromatic compounds. Genes associated with the biosynthesis of essential B vitamins were highly redundant and functional. Moreover, a relatively high number of predicted and functional lipase and esterase genes indicated that the alga-associated bacteria are possibly a major sink for lipids and fatty acids produced by the microalgae. This is the first metagenome study of microalga- and PBR-associated biofilm bacteria, and it gives new clues for improved biofuel production in PBRs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available