4.4 Article

The relative thermal stability of tissue macromolecules and cellular structure in burn injury

Journal

BURNS
Volume 31, Issue 5, Pages 568-577

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.burns.2005.01.015

Keywords

burn; molecular stability; protein denaturation; membrane poration; model

Funding

  1. NIGMS NIH HHS [R01 GM64757, R01 GM61101] Funding Source: Medline

Ask authors/readers for more resources

When tissue is subjected to higher than physiological temperatures, protein and cell organelle structures can be altered resulting in cell death and subsequent tissue necrosis. A burn injury can be stratified into three main zones, coagulation, stasis and edema, which correlate with the extent of heat exposure and thermal properties of the tissue. While there has been considerable effort to characterize the time-temperature dependence of the injury, relatively little attention has been paid to the other important variable, the thermal susceptibility of the tissue. In the present study, we employ a standard physical chemistry approach to predict the level of denaturation at supraphysiological temperatures of 12 vital proteins as well as RNA, DNA and cell membrane components. Melting temperatures and unfolding enthalpies of the cellular components are used as input experimental parameters. This approach allows us to establish a relation between the level of denaturation of critical cellular components and clinical manifestations of the burn through the characteristic zones of the injury. Specifically, we evaluate the degree of molecular alteration for characteristic temperature profiles at two different depths (Mid-Dermis and Dermis-Fat interface) of 80 degrees C; 20 s contact burn. The results of this investigation suggest that the thermal alteration of the plasma membrane is likely the most significant cause of the tissue necrosis. The lipid bilayer and membrane-bound ATPases show a high probability of thermal damage (almost 100% for the former and 85% for the latter) for short heat exposure times. These results suggest that strategies to minimize the damage in a burn injury might focus on the stabilization of the cellular membrane and membrane-bound ATPases. Further work will be required to validate these predictions in an in vivo model. (C) 2005 Elsevier Ltd and ISBI. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available