4.5 Article

Characterization of MgO substrates for growth of epitaxial YBCO thin films

Journal

SUPERCONDUCTOR SCIENCE & TECHNOLOGY
Volume 18, Issue 8, Pages 1035-1041

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0953-2048/18/8/002

Keywords

-

Ask authors/readers for more resources

YBCO films were grown on magnesium oxide (MgO) substrates for fabricating step-edge junction SQUIDS and other Josephson junction-based devices. In-plane 45 degrees grain misorientation was frequently observed in films grown on degraded or contaminated MgO substrates. The appearance of these misoriented grains results in a decrease of the thin-film critical-current density and reduces the device yield. in this work, we investigated the chemical properties of MgO substrates with various surface conditions due to different substrate preparation methods and environmental degradation, by using x-ray photoelectron spectroscopy (XPS). The XPS characteristics of the surface are compared before and after a thermal annealing at 760 degrees C resembling the thin-film deposition heating cycle. The MgO substrates, after lithographic processing or only weeks of exposure to the laboratory environment, showed surface degradation characterized by the presence of hydroxyl groups, carbonate, and other possible carbon compounds such as bicarbonate, alcohols and carboxyl. Heating of the substrates to 760 degrees C improves the surface quality to a certain degree with the removal of some of the above contaminants, but is not sufficient to recover the MgO surfaces. A final Ar ion-beam etch cleaning process at low ion energy proved to be very effective in refreshing the MgO substrate surface that had been degraded due to lithographic processing or storage. Films grown on MgO with this pre-treatment showed perfect grain alignment and high critical-current densities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available