4.7 Article

A new kindred with Pseudohypoaldosteronism type II and a novel mutation (564D>H) in the acidic motif of the WNK4 gene

Journal

HYPERTENSION
Volume 46, Issue 2, Pages 295-300

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.HYP.0000174326.96918.d6

Keywords

kinase; mutation

Ask authors/readers for more resources

We identified a new kindred with the familial syndrome of hypertension and hyperkalemia (pseudohypoaldosteronism type II or Gordon's syndrome) containing an affected father and son. Mutation analysis confirmed a single heterozygous G to C substitution within exon 7 (1690G>C) that causes a missense mutation within the acidic motif of WNK4 (564D>H). We confirmed the function of this novel mutation by coexpressing it in Xenopus oocytes with either the NaCl cotransporter (NCCT) or the inwardly rectifying K-channel (ROMK). Wild-type WNK4 inhibits Na-22(+) flux in Xenopus oocytes expressing NCCT by approximate to 90% (P < 0.001), whereas the 564D>H mutant had no significantly inhibitory effect on flux through NCCT. In oocytes expressing ROMK, wild-type WNK4 produced >50% inhibition of steady-state current through ROMK at a +20-mV holding potential (P < 0.001). The 564D>H mutant produced further inhibition with steady-state currents to some 60% to 70% of those seen with the wild-type WNK4. Using fluorescent-tagged NCCT (enhanced cyan fluorescent protein-NCCT) and ROMK (enhanced green fluorescent protein-ROMK) to quantify the expression of the proteins in the oocyte membrane, it appears that the functional effects of the 564D>H mutation can be explained by alteration in the surface expression of NCCT and ROMK. Compared with wild-type WNK4, WNK4 564D>H causes increased cell surface expression of NCCT but reduced expression of ROMK. This work confirms that the novel missense mutation in WNK4, 564D>H, is functionally active and highlights further how switching charge on a single residue in the acid motif of WNK4 affects its interaction with the thiazide-sensitive target NCCT and the potassium channel ROMK.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available