4.6 Article

Silver(I), Mercury(II), Cadmium(II), and Zinc(II) Target Exposed Enzymic Iron-Sulfur Clusters when They Toxify Escherichia coli

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 78, Issue 10, Pages 3614-3621

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.07368-11

Keywords

-

Funding

  1. NIH [GM49640, GM 101012]
  2. China Scholarship Council [2009663034]

Ask authors/readers for more resources

The toxicity of soft metals is of broad interest to microbiologists, both because such metals influence the community structures in natural environments and because several metals are used as antimicrobial agents. Their potency roughly parallels their thiophilicity, suggesting that their primary biological targets are likely to be enzymes that contain key sulfhydryl moieties. A recent study determined that copper poisons Escherichia coli in part by attacking the exposed [4Fe-4S] clusters of dehydratases. The present investigation sought to test whether other soft metals also target these enzymes. In vitro experiments revealed that low-micromolar concentrations of Ag(I) and Hg(II) directly inactivated purified fumarase A, a member of the dehydratase family. The enzyme was also poisoned by higher levels of Cd(H) and Zn(II), but it was unaffected by even millimolar concentrations of Mn(II), Co(H), Ni(II), and Pb(II). Electron paramagnetic resonance analysis and measurements of released iron confirmed that damage was associated with destruction of the [4Fe-4S] cluster, and indeed, the reconstruction of the cluster fully restored activity. Growth studies were then performed to test whether dehydratase damage might underlie toxicity in vivo. Barely toxic doses of Ag(I), Hg(II), Cd(II), and Zn(II) inactivated all tested members of the [4Fe-4S] dehydratase family. Again, activity was recovered when the clusters were rebuilt. The metals did not diminish the activities of other sampled enzymes, including NADH dehydrogenase I, an iron-sulfur protein whose clusters are shielded by polypeptide. Thus, the data indicate that dehydratases are damaged by the concentrations of metals that initiate bacteriostasis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available