4.3 Article

Evolutionary robustness of an optimal phenotype: Re-evolution of lysis in a bacteriophage deleted for its lysin gene

Journal

JOURNAL OF MOLECULAR EVOLUTION
Volume 61, Issue 2, Pages 181-191

Publisher

SPRINGER
DOI: 10.1007/s00239-004-0304-4

Keywords

optimality; experimental evolution; evolutionary robustness; lysis; T7; bacteriophage; genome evolution; molecular evolution; fitness; adaptation

Funding

  1. NIGMS NIH HHS [GM 32095, GM 57756] Funding Source: Medline

Ask authors/readers for more resources

Optimality models are frequently used to create expectations about phenotypic evolution based on the fittest possible phenotype. However, they often ignore genetic details, which could confound these expectations. We experimentally analyzed the ability of organisms to evolve towards an optimum in an experimentally tractable system, lysis time in bacteriophage T7. T7 lysozyme helps lyse the host cell by degrading its cell wall at the end of infection, allowing viral escape to infect new hosts. Artificial deletion of lysozyme greatly reduced fitness and delayed lysis, but after evolution both phenotypes approached wild-type values. Phage with a lysis-deficient lysozyme evolved similarly. Several mutations were involved in adaptation, but most of the change in lysis timing and fitness increase was mediated by changes in gene 16, an internal virion protein not formerly considered to play a role in lysis. Its muralytic domain, which normally aids genome entry through the cell wall, evolved to cause phage release. Theoretical models suggest there is an optimal lysis time, and lysis more rapid or delayed than this optimum decreases fitness. Artificially constructed lines with very rapid lysis had lower fitness than wild-type T7, in accordance with the model. However, while a slow-lysing line also had lower fitness than wild-type, this low fitness resulted at least partly from genetic details that violated model assumptions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available