4.6 Article

Microbial Diversity in Anaerobic Sediments at Rio Tinto, a Naturally Acidic Environment with a High Heavy Metal Content

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 77, Issue 17, Pages 6085-6093

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.00654-11

Keywords

-

Funding

  1. Spanish Ministerio de Ciencia e Innovacion [CTM2009-10521, CGL2009-11059]

Ask authors/readers for more resources

The Tinto River is an extreme environment located at the core of the Iberian Pyritic Belt (IPB). It is an unusual ecosystem due to its size (100 km long), constant acidic pH (mean pH, 2.3), and high concentration of heavy metals, iron, and sulfate in its waters, characteristics that make the Tinto River Basin comparable to acidic mine drainage (AMD) systems. In this paper we present an extensive survey of the Tinto River sediment microbiota using two culture-independent approaches: denaturing gradient gel electrophoresis and cloning of 16S rRNA genes. The taxonomic affiliation of the Bacteria showed a high degree of biodiversity, falling into 5 different phyla: Proteobacteria, Firmicutes, Bacteroidetes, Acidobacteria, and Actinobacteria; meanwhile, all the Archaea were affiliated with the order Thermoplasmatales. Microorganisms involved in the iron (Acidithiobacillus ferrooxidans, Sulfobacillus spp., Ferroplasma spp., etc.), sulfur (Desulfurella spp., Desulfosporosinus spp., Thermodesulfobium spp., etc.), and carbon (Acidiphilium spp., Bacillus spp., Clostridium spp., Acidobacterium spp., etc.) cycles were identified, and their distribution was correlated with physicochemical parameters of the sediments. Ferric iron was the main electron acceptor for the oxidation of organic matter in the most acid and oxidizing layers, so acidophilic facultative Fe(III)-reducing bacteria appeared widely in the clone libraries. With increasing pH, the solubility of iron decreases and sulfate-reducing bacteria become dominant, with the ecological role of methanogens being insignificant. Considering the identified microorganisms-which, according to the rarefaction curves and Good's coverage values, cover almost all of the diversity-and their corresponding metabolism, we suggest a model of the iron, sulfur, and organic matter cycles in AMD-related sediments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available