4.5 Article

Optimal engineering system design guided by data-mining methods

Journal

TECHNOMETRICS
Volume 47, Issue 3, Pages 336-348

Publisher

AMER STATISTICAL ASSOC
DOI: 10.1198/004017005000000157

Keywords

classification and regression tree; fixture layout optimization; K-means clustering; kriging model; multistation assembly processes; uniform design

Ask authors/readers for more resources

An optimal engineering design problem is challenging because nonlinear objective functions usually need to be evaluated in a high-dimensional design space. This article presents a data-mining-aided optimal design method, that is able to find a competitive design solution with a relatively low computational cost. The method consists of four components: (1) a uniform-coverage selection method, that chooses design representatives from among a large number of original design alternatives for a nonrectangular design space; (2) feature functions, of which evaluation is computationally economical as the surrogate for the design objective function; (3) a clustering method, that generates a design library based on the evaluation of feature functions instead of an objective function; and (4) a classification method to create the design selection rules, eventually leading us to a competitive design. Those components are implemented to facilitate the optimal fixture layout design in a multistation panel assembly process. The benefit of the data-mining-aided optimal design is clearly demonstrated by comparison with both local optimization methods (e.g., simplex search) and random search-based optimizations (e.g., simulated annealing).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available