4.6 Article

Application of a Receptor-Binding Capture Quantitative Reverse Transcription-PCR Assay To Concentrate Human Norovirus from Sewage and To Study the Distribution and Stability of the Virus

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 78, Issue 2, Pages 429-436

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.06875-11

Keywords

-

Funding

  1. USDA Agricultural Research Service CRIS [5325-42000-021-044, 5325-42000-021-045]

Ask authors/readers for more resources

Water is an important route for human norovirus (HuNoV) transmission. Using magnetic beads conjugated with blood group-like antigens (HuNoV receptors), we developed a simple and rapid receptor-binding capture and magnetic sequestration (RBCMS) method and compared it to the existing negatively charged membrane absorption/elution (NCMAE) method for concentrating HuNoV from sewage effluent. RBCMS required 6-fold-less sample volume than the NCMAE method and also resulted in a significantly higher yield of HuNoV. The NCMAE and RBCMS concentrations of genogroup I (GI) HuNoV measured by quantitative reverse transcription-PCR (qRT-PCR) resulted in average threshold cycle (C-T) values of 34.68 (8.68 copies, 252-fold concentration) versus 34.07 (13.05 copies, 477-fold concentration), respectively; the NCMAE and RBCMS concentrations of genogroup II (GII) HuNoV were measured as average C-T values of 33.32 (24.7 copies, 239-fold concentration) versus 32.38 (46.9 copies, 333-fold concentration), respectively. The specificity of qRT-PCR was confirmed by traditional RT-PCR and an RNase I protection assay. The qRT-PCR signal from RBCMS-concentrated HuNoV treated with RNase I indicated that it was from encapsidated RNA and, probably, viable virus. In contrast, the qRT-PCR signal from NCMAE-concentrated HuNoV was not protected from RNase I and, likely, degradation. Both GI and GII HuNoV were detected from sewage effluent samples collected between April and July with average concentrations of 7.8 x 10(3) genomic copies per liter (gc/liter) and 4.3 x 10(4) gc/liter, respectively. No GI and <2% GII HuNoV were detected in sewage samples stored at room temperature for 4 weeks. We conclude that RBCMS requires less sample volume, has better recovery and sensitivity, and is faster than NCMAE for detection of HuNoV in sewage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available