4.7 Article

Effects of root replantation and neurotrophic factor treatment on long-term motoneuron survival and axonal regeneration after C7 spinal root avulsion

Journal

EXPERIMENTAL NEUROLOGY
Volume 194, Issue 2, Pages 341-354

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2005.02.018

Keywords

motoncuron survival; axonal regeneration; nerve root avulsion; nerve root replantation; neurotrophic factors; CNTF; BDNF

Categories

Ask authors/readers for more resources

In order to determine the effect of nerve root replantation on motoneuron survival and regeneration, we have avulsed and replanted C7 ventral rootlets in adult rabbits under various conditions. Intraspinal alterations and exact positions of ventrolateral replantations were studied in each animal, and the effects of BDNF and/or CNTF administration during replantation investigated in different experimental groups. Six months after lesion, about 70% of motoneurons were lost on the lesioned sides in the C7 segment, without significant differences between groups. Retrograde fluorescent tracing and histological analysis documented that many axons had regrown through the original ventral exit zones or had exited the spinal cord at the lateral replantation site. However, many laterally exiting axons had not grown out directly from the ventral horn through the lateral white matter but had elongated vertically before leaving the spinal cord. The mean axonal diameter was significantly higher in regenerated axons that had exited through the original ventral exit zones in comparison with axons which had grown out laterally. Application of BDNF and/or CNTF did not show any effects on the pathways of regeneration into the replanted root. The results indicate that motoneuron survival cannot be significantly improved by a single dose of neurotrophic factors applied to a ventrolateral replantation site. However, a significant number of myelinating axons are found in replanted roots, and regeneration may be more efficient when outgrowth through the original ventral exit zone is supported. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available