4.5 Article Proceedings Paper

Heat transfer enhancement by using nanofluids in forced convection flows

Journal

INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW
Volume 26, Issue 4, Pages 530-546

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ijheatfluidflow.2005.02.004

Keywords

laminar forced convection; heat transfer enhancement; heat transfer augmentation; nanofluid; nanoparticles; tube flow; radial flow

Ask authors/readers for more resources

In the present paper, the problem of laminar forced convection flow of nanofluids has been thoroughly investigated for two particular geometrical configurations, namely a uniformly heated tube and a system of parallel, coaxial and heated disks. Numerical results, as obtained for water-gamma Al2O3 and Ethylene Glycol-gamma Al2O3 mixtures, have clearly shown that the inclusion of nanoparticles into the base fluids has produced a considerable augmentation of the heat transfer coefficient that clearly increases with an increase of the particle concentration. However, the presence of such particles has also induced drastic effects on the wall shear stress that increases appreciably with the particle loading. Among the mixtures studied, the Ethylene Glycol-gamma Al2O3 nanofluid appears to offer a better heat transfer enhancement than water-gamma Al2O3; it is also the one that has induced more pronounced adverse effects on the wall shear stress. For the case of tube flow, results have also shown that, in general, the heat transfer enhancement also increases considerably with an augmentation of the flow Reynolds number. Correlations have been provided for computing the Nusselt number for the nanofluids considered in terms of the Reynolds and the Prandtl numbers and this for both the thermal boundary conditions considered. For the case of radial flow, results have also shown that both the Reynolds number and the distance separating the disks do not seem to considerably affect in one way or another the heat transfer enhancement of the nanofluids (i.e. when compared to the base fluid at the same Reynolds number and distance). (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available