4.8 Article

Convection-enhanced drug delivery: Increased efficacy and magnetic resonance image monitoring

Journal

CANCER RESEARCH
Volume 65, Issue 15, Pages 6858-6863

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-05-0161

Keywords

-

Categories

Funding

  1. NINDS NIH HHS [R01 NS39335] Funding Source: Medline

Ask authors/readers for more resources

Convection-enhanced drug delivery (CED) is a novel approach to directly deliver drugs into brain tissue and brain tumors. It is based on delivering a continuous infusion of drugs via intracranial catheters, enabling convective distribution of high drug concentrations over large volumes of the target tissue while avoiding systemic toxicity. Efficient formation of convection depends on various physical and physiologic variables. Previous convection-based clinical trials showed significant diversity in the extent of convection among patients and drugs. Monitoring convection has proven to be an essential, yet difficult task. The current study describes the application of magnetic resonance imaging for immediate assessment of convection efficiency and early assessment of cytotoxic tissue response in a rat brain model. Immediate assessment of infusate distribution was obtained by mixing Gd-diethylenetriaminepentaacetic acid in the infusate prior to infusion. Early assessment of cytotoxic tissue response was obtained by subsequent diffusion-weighted magnetic resonance imaging. In addition, the latter imaging methodologies were used to establish the correlation between CED extent and infusate's viscosity. It was found that low-viscosity infusates tend to backflow along the catheter track, whereas high-viscosity infusates tend to form efficient convection. These results suggest that CED formation and extent may be significantly improved by increasing the infusate's viscosities, thus increasing treatment effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available