4.6 Article

Genome-Wide Transcriptional and Physiological Responses of Bradyrhizobium japonicum to Paraquat-Mediated Oxidative Stress

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 77, Issue 11, Pages 3633-3643

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.00047-11

Keywords

-

Funding

  1. Ministry of Education, Science and Technology [2010-0016797]
  2. Inha University
  3. University of Texas at Arlington

Ask authors/readers for more resources

The rhizobial bacterium Bradyrhizobium japonicum functions as a nitrogen-fixing symbiont of the soybean plant (Glycine max). Plants are capable of producing an oxidative burst, a rapid proliferation of reactive oxygen species (ROS), as a defense mechanism against pathogenic and symbiotic bacteria. Therefore, B. japonicum must be able to resist such a defense mechanism to initiate nodulation. In this study, paraquat, a known superoxide radical-inducing agent, was used to investigate this response. Genome-wide transcriptional profiles were created for both prolonged exposure (PE) and fulminant shock (FS) conditions. These profiles revealed that 190 and 86 genes were up-and downregulated for the former condition, and that 299 and 105 genes were up-and downregulated for the latter condition, respectively (>2.0-fold; P < 0.05). Many genes within putative operons for F0F1-ATP synthase, chemotaxis, transport, and ribosomal proteins were upregulated during PE. The transcriptional profile for the FS condition strangely resembled that of a bacteroid condition, including the FixK(2) transcription factor and most of its response elements. However, genes encoding canonical ROS scavenging enzymes, such as superoxide dismutase and catalase, were not detected, suggesting constitutive expression of those genes by endogenous ROS. Various physiological tests, including exopolysaccharide (EPS), cellular protein, and motility characterization, were performed to corroborate the gene expression data. The results suggest that B. japonicum responds to tolerable oxidative stress during PE through enhanced motility, increased translational activity, and EPS production, in addition to the expression of genes involved in global stress responses, such as chaperones and sigma factors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available