4.7 Article

Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space

Journal

BIOLOGY AND FERTILITY OF SOILS
Volume 41, Issue 6, Pages 379-388

Publisher

SPRINGER
DOI: 10.1007/s00374-005-0858-3

Keywords

denitrification; nitrification; nitrous oxide; soil water-filled pore space

Categories

Funding

  1. Biotechnology and Biological Sciences Research Council [D19035/2] Funding Source: researchfish
  2. Natural Environment Research Council [NE/B500666/1] Funding Source: researchfish

Ask authors/readers for more resources

A combination of stable isotope and acetylene (0.01% v/v) inhibition techniques were used for the first time to determine N2O production during denitrification, autotrophic nitrification and heterotrophic nitrification in a fertilised (200 kg N ha(-1)) silt loam soil at contrasting (20-70%) water-filled pore space (WFPS). N-15-N2O emissions from (NH4NO3)-N-14-N-15 replicates were attributed to denitrification and N-15-N2O from (NH4NO3)-N-15-N-15 minus that from (NH4NO3)-N-14-N-15 replicates was attributed to nitrification and heterotrophic nitrification in the presence of acetylene, as there was no dissimilatory nitrate reduction to ammonium or immobilisation and remineralisation of N-15-NO3-. All of the N2O emitted at 70% WFPS (31.6 mg N2O-N m(-2) over 24 days; 1.12 mu g N2O-N g dry soil(-1); 0.16% of N applied) was produced during denitrification, but at 35-60% WFPS nitrification was the main process producing N2O, accounting for 81% of N-15-N2O emitted at 60% WFPS, and 7.9 mu g N-15-N2O m(-2) (0.28 ng N-15-N2O g dry soil(-1)) was estimated to be emitted over 7 days during heterotrophic nitrification in the 50% WFPS treatment and accounted for 20% of N-15-N2O from this treatment. Denitrification was the predominant N2O-producing process at 20% WFPS (2.6 mu g N-15-N2O m(-2) over 7 days; 0.09 ng N-15-N2O g dry soil(-1); 85% of (15)pN-N2O from this treatment) and may have been due to the occurrence of aerobic denitrification at this WFPS. Our results demonstrate the usefulness of a combined stable isotope and acetylene approach to quantify N2O emissions from different processes and to show that several processes may contribute to N2O emission from agricultural soils depending on soil WFPS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available